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Escape problem under stochastic volatility: The Heston model
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We solve the escape problem for the Heston random diffusion model from a finite interval of span L. We
obtain exact expressions for the survival probability (which amounts to solving the complete escape problem)
as well as for the mean exit time. We also average the volatility in order to work out the problem for the return
alone regardless of volatility. We consider these results in terms of the dimensionless normal level of
volatility—a ratio of the three parameters that appear in the Heston model—and analyze their form in several
asymptotic limits. Thus, for instance, we show that the mean exit time grows quadratically with large spans
while for small spans the growth is systematically slower, depending on the value of the normal level. We
compare our results with those of the Wiener process and show that the assumption of stochastic volatility, in
an apparently paradoxical way, increases survival and prolongs the escape time. We finally observe that the

model is able to describe the main exit-time statistics of the Dow-Jones daily index.
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I. INTRODUCTION

Models of financial dynamics based on two-dimensional
diffusion processes, known as stochastic volatility (SV) mod-
els [1], are being widely accepted as a reasonable explana-
tion for many empirical observations collected under the
name of “stylized facts” [2]. In such models the volatility,
that is, the standard deviation of returns originally thought to
be a constant, is a random process coupled with the return so
that they both form a two-dimensional diffusion process gov-
erned by a pair of Langevin equations [1].

Volatility is nowadays a key concept in any financial set-
ting. It is the backbone of many financial products that are
designed to cover investors’ risk. Extreme values associated
with volatility have thus a special meaning, as they do in
physics and natural sciences where escape problems in noisy
environments such as the Kramers problem are of the utmost
importance [3,4].

Extreme-value problems have a clear financial interest
apart from the obvious relation to the classic ruin problem.
As an example, among others, let us mention the so-called
leverage certificates (LC’s) which are structured products of-
fering a nonzero payoff only if the underlying asset does not
escape from a pre-established domain over a certain time
window [5]. Although usually sold as products insensitive to
volatility changes, LC’s are very sensitive to other risk com-
ponents such as skewness and kurtosis [5]. On the other
hand, stochastic volatility models result in fat tailed distribu-
tions for the return and show clustering in the volatility, two
well-established facts in empirical data which are closely re-
lated to skewness and kurtosis [2]. For this reason, the solu-
tion to the escape problem under stochastic volatility can be
used to derive a more precise price than that of the Wiener
process for a wide class of LC products (see the recent works
[6,7] for some alternative approaches to option pricing under
stochastic volatility).
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In a recent paper we have addressed a partial aspect of the
problem: that of extreme times for the volatility regardless
the value of the return [8]. Now we want to address the
overall escape problem associated with both return and vola-
tility. This is certainly a more difficult task because the return
strongly depends on volatility while, in the standard ap-
proach to SV models, the latter is supposed to be indepen-
dent of the former.

We are thus left with a two-dimensional escape problem
which is always quite involved. The situation is similar to
that of the unbounded Brownian particle where the extreme-
value problem for the velocity of the particle is relatively
easy to handle, while that of its position is much more intri-
cate [3,9-11].

The extreme-time problem of the return has been ad-
dressed, to our knowledge, in only a few works. We refer the
reader to our recent work on the subject [12,13], although it
is based on the continuous-time random walk technique,
which is an entirely different frame, and with a different
scope, from that of SV models. Within the setting of the
latter, we are only aware of the recent works by Bonanno
et al. [14—17] where an approach to the hitting-time problem
is addressed through numerical simulations of the Heston
model and some variations of it (see also the work of Jafari
et al. [18] for an empirical study of level crossing and hitting
times).

In this paper we study the complete escape problem of
one particular SV model: the Heston model [19]. Different
SV models basically differ in the way the volatility depends
on the underlying noise governing its dynamics. The Heston
model has the benefit, over other SV models of allowing
exact analytical developments. This is the case of its unre-
stricted (i.e., barrier-free) probability density function, which
was obtained by Yakovenko and Dragulescu a few years ago
[20] (see also Ref. [21]). Herein, we will obtain not only the
exact expression of the mean escape time (MET) but the
exact survival probability as well. The knowledge of the lat-
ter is equivalent to solving the entire escape problem.

The paper is organized as follows. In Sec. II we present
the Heston model and obtain the complete solution to the
escape problem. In Sec. III we evaluate the mean escape time
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and analyze its behavior for high and low volatility. In Sec.
IV we average out the volatility assuming it has reached the
stationary state. This allows us to get exact expressions for
the survival probability and the mean escape time of the
return alone. Conclusions are drawn in Sec. V, and some
more technical details are in the Appendixes.

II. THE HESTON MODEL AND THE SURVIVAL
PROBABILITY

Let P(r) be a speculative price or the value of a financial
index. We define the zero-mean return X(7) through the sto-
chastic differential (in the 1td sense)

dx(1) = 0 <P(t) > (1)

where (-) denotes the average [22]. In terms of X(¢) the
Heston model [19] is a two-dimensional diffusion process
(X(1),Y(r)) described by the following pair of stochastic dif-
ferential equations (again, in the Itd sense):

dx(0) = Y(0)dw,(1), 2)
dY (1) = — o Y(1) = m2)dr + k\Y (1) dWi(2), (3)

where W;(t) are Wiener processes, i.e., dW;(r)=&(r)dt
(i=1,2), where &(r) are zero-mean Gaussian white noises
with (&(1)&(t"))=6,;6(t—1t") [23]. Note that in this particular
model the volatility is

o) =Y(1), (4)

i.e., Y(¢) is the variance of return although, as long as no
confusion arises, we will use the term “volatility variable” or
just “volatility” for the random process Y(¢). In Eq. (3) the
parameter m is the so-called normal level of volatility, «
>0 is related to the “reverting force” toward the normal
level m# 0 (see below) and k, sometimes referred to as the
“vol of vol,” measures the fluctuations of the volatility.

In the context of biological diffusion problems the process
Y(¢) described by Eq. (3) was proposed many years ago by
Feller [24] who, among other properties, proved that Y(r) is
always positive so that the volatility, Eq. (4), is real, positive,
and well defined. This feature, along with a non-negligible
(and exponential) autocorrelation with characteristic time
1/, makes the process very appealing from the perspective
of mathematical finance.

In 1985 Cox, Ingersoll, and Ross [25] introduced the
same dynamics in connection with interest rates of bonds.
Almost a decade later and aiming to provide a more realistic
price for options, Heston [19] undertook the same dynamics
but for the diffusion coefficient of financial price fluctuations
as is precisely shown in Egs. (2) and (3).

The resulting process has become quite popular among
financial practitioners who want to include the effect of vola-
tility changes in option pricing. Part of this success is due to
the easy interpretation of the parameters. As mentioned, 1/«
provides the typical time that the volatility needs to reach the
stationary state (the stationary density is the Gamma distri-
bution; see Sec. IV). For this reason, a can also be inter-
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preted as the strength of the reverting force that ties the pro-
cess Y(¢) to its normal level m?, the latter being the mean
value of Y(¢) in the stationary state. Since for the Gamma
distribution the stationary mean value cannot be zero, we
conclude that m # 0. Finally, the magnitude of the volatility
fluctuations is provided by k, which like « and m?, has units
of 1/(time).

Our main interest is the escape problem associated with
the Heston model. To this end, let us denote by S(x,y,) the
probability that the zero-mean return X(z), starting at X(0)
=x with volatility ¥Y(0)=y, is at time ¢ inside the interval
(=L/2,L/2) without having ever left it during previous
times. In other words, S(x,y,?) is the survival probability
(SP) for the joint process (X(z), Y()) to be at time ¢ inside the
strip

-L2<X(t)<L/2,

with X(0)=x and Y(0)=y.
The SP obeys the following backward Fokker-Planck
equation [26]:

0<Y(r) <o,

as , 0 1., #S 1 &S
—=—aly-m)_—+ Ky S+ y
ay 2

—, 5
ot ay* 27 ox? ®)

with initial and boundary conditions, respectively, given by

S(x,y,00=1, S(xL/2,y,t)=0. (6)

This problem can be solved by means of Fourier series.
Indeed the boundary conditions, S(=L/2,y,1)=0, lead us to
look for a solution of the form

o0

S(x,y,0) = 2, S, (v,0)cos[(2n + 1)mx/L], (7)
n=0

where the Fourier coefficients S,(y,?) are
L2
S, (y,1) = zf S(x,y,t)cos[(2n + 1) mx/L]dx. (8)
Y

From Egs. (5) and (8) we see that these coefficients are the
solution to the initial-value problem

s s, 1., &S, 1
L= —aly—mH)—" + =K%y 2" - —[2n+1)7w/LTyS,,
ot dy 2 dy 2
©)
with initial condition
S,(y,0) = . (10)
where
4(=1)"
= 11
" en+1) ()

Defining a new time scale 7 and a new volatility variable

v by the change of scale
r=at, v=Qa/kdy, (12)

the problem above reads
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‘;ST" =~ (- 0)‘% +u ’f;” —(B2L)%S,  (13)
and
5,(0.0) = ¥,, (14)
where
B,=(kla)2n+1)7 (15)
and
0= Qalk®)m?. (16)

Before proceeding further let us remark that the parameter
0, which turns out to be crucial for the escape problem at
hand, can be regarded as the “dimensionless normal level” of
volatility. It represents a balance between the tendency to-
ward the normal level measured by am? and the volatility
fluctuations quantified by k” (see the discussion in Sec. IV B
regarding the cases #<<1 and 6> 1).

The problem posed by Egs. (13) and (14) is solved by the
function

Su(v.7) =y, exp[- A,(7) - B,(7)v], (17)

where A,(7) and B,(7) are functions of time to be deter-
mined. In effect, plugging it into Eq. (13), we see that Eq.
(17) is the solution to the problem provided that

A, (7)= ﬂf B,(s)ds, (18)
0
and B,(7) obeys the Riccati equation
B,=-B,-B.+(B,/2L), (19)

with initial condition B,(0)=0.
In Appendix A we show that

-A,T
+ _ n
A (7) = 9[ T+ 1n<%)} (20)
and
1- e—AnT
B =g, 21
A7) =1 T+ (e (21)
where
A =\T+(B/LY,  pe=(A, £ 1)2. (22)

Therefore, the solution to the escape problem for the two-
dimensional Heston SV model is

o

S(x,v,7) =2, v, exp[— A, (1) = B,(7)v]cos[(2n + 1) mx/L].
n=0

(23)

Figure 1 shows in a three-dimensional plot this SP as a func-
tion of the return x and volatility variable v for 7=0.1 [27].

In the asymptotic regime, for either long or short times,
the SP is somewhat simpler. Thus, when 71 (i.e., 1> ah),
we have A, (7)=0u_7 and B,(7) = u_. Hence,

PHYSICAL REVIEW E 78, 056104 (2008)

1r

0.8 | L=0.01, 6=1.25

0.6 |

=0.1
S(x,v,7=0.1) o4l

0.2 |

co00000000
—=“NWAOIONOO©

FIG. 1. (Color online) Survival probability S(x,v,7) given by
Eq. (23) with 7=0.1 (r=2.22 days) and L=0.01 in terms of return x
and volatility v. Parameters of the model: #=1.25, @=0.045 day~!,
m=0.093 day~!?, and k=0.0014 day~'. Recall Eq. (16) and note
that there exist only three independent parameters.

SCev,7) = D e 07 cos[(2n + 1) mx/L] (7> 1).
n=0
(24)

On the other hand, for short times 7<<1 (i.e., r<a™!) we
write e *"=1-A,7+0(7) and taking into account that u_
+u,=A, and p_p,=—(B,/2L)%, we see from Eqs. (20) and
(21) that

A, = 0lp_r+In(l — u_n]+ O(7),

2
B, = (B./2L) T 00,
l—pu_7
whence,
< 1 (ﬁn/zL)Zv) }
S(x,v,7) = nzzo —(l ) exp[— (0,u_+ EE r T
Xcos[(2n+ 1)mx/L] (7<1). (25)

In Fig. 2 we represent the exact SP, Eq. (23), in terms of
the volatility at x=0 and for fixed times. The plots confirm,
as hinted by Egs. (24) and (25), that the SP decays exponen-
tially with the volatility for both short and long times. The
characteristic exponent of this decay depends on the value of
6, being larger for smaller 6, i.e., larger k [cf. Eq. (16)].
Moreover, as 7= 1, when the volatility is small, the higher
survival probability corresponds to the case when 6 is
smaller. This is a distinct behavior with respect to the re-
maining situations.

III. THE MEAN ESCAPE TIME

The survival probability S(x,v,7) provides maximal infor-
mation on the escape problem of the two-dimensional pro-
cess (X(r),Y(7)). Indeed, the probability density function
f(t|x,v) of the escape time is related to the SP by [26]
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S(x=0,v,t=0.1)
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FIG. 2. (Color online) Survival probability S(x,v,7) given by Eq. (23) at x=0 as a function of the volatility v. Left plot shows the case
when 7=0.1 (¢r=2.22 days) and L=0.01. The figure on the right exhibits the case when 7=100 and L=0.1. The straight lines correspond to
the exponential decay with v mentioned in the main text. Parameters of the model are a=0.045 day™!, m=0.093 day~"?, and the three
different values of the parameter #=(2a/k*)m? provide three different values for k accordingly.

dS(x,v,1)
a

fltlx,v) =
and all moments of the escape time can be obtained through
the SP. Thus, for instance, the mean escape (or exit) time is
given by

T(x,v) = f‘” S(x,v,1)dt. (26)
0

For the Heston model we see from Eq. (23) that the two-
dimensional MET, T(x,v), can be written in terms of the
Fourier series

T(x,v) = 12 T,(v)cos[(2n + 1)mx/L],
o))

(27)
where

T,(v) =, f exp[-A,(7) - B,(7)v]dr.
0

Using Egs. (20) and (21) and some simple manipulations,

which involve the change of variable é&=¢™+", we obtain
T,(v) = %A, g
! wd S 1+ (n/p,)é’
1-¢
Xexp|:—,u_<—)v}d§. (28)
L+ (n/py)é

Figure 3 provides a three-dimensional representation of
T(x,v) based on the numerical computation of Egs. (27) and
(28) [28]. A noticeable aspect worth stressing is shown in
Fig. 4, where two projections of the MET are depicted for
either small or large volatility and also for three different
values of the normal level §. We remind the reader that we
have normalized the volatility variable y with the dimension-
less v=(2a/k?)y [cf. Eq. (12)]. Thus when the dimensionless
volatility variable v is very large, the left plot in Fig. 4 shows

that the larger € corresponds to the longer MET (in this case
v=1300, which corresponds to \&:0.2 day™"?). In the oppo-
site case of very low volatility (v=0.001 and Wy
=10"* day~""?) the right plot shows that this behavior is re-
versed, for now =1 corresponds to a longer T(x,v). This
anomaly is also observed in Fig. 5 when v <0.1.

Having obtained the expression for 7(x,v) as given by
Egs. (27) and (28), let us proceed to elucidate the depen-
dence of the MET on the volatility. This is a meaningful
question from a practical point of view, for market behavior
depends critically on volatility. Intuition tells us that the es-
cape time must tend to zero as the volatility increases and a
quick glance at both Eq. (28) and Fig. 3 confirms this, but
what is the form of this decrease? On the other hand, the
behavior of the escape time if the volatility is low is also
relevant: will T(x,v) grow without bound as v — 0? Or will it
tend to a finite, albeit maximum, value? We will next answer
these questions.

Let us first obtain the behavior of the MET when v=0
[29]. In this case Eq. (28) reads

5 .
4 L=0.01, 6=1.25
4.5
4
3.5
T(xV) 25
(in days) 2 1_5
0.5
1 0
0

FIG. 3. (Color online) Mean escape time 7(x,v) given by Eq.
(27) in terms of return x and volatility variable v. Parameters of the
model: =125, @=0.045day”!, m=0.093 day "%, and &k
=0.0014 day~".
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T(x,v

FIG. 4. (Color online) Mean escape time T(x,v) given by Eq. (27) as a function of the starting return x. Left plot shows the case when
v is large, showing a perfect hierarchy where larger # means larger MET. Right plot shows how the =1 case breaks this hierarchical order

for small enough values of v. Parameters of the model are a=0.045 day

6=(2a/k*)m? provide three different values for k accordingly.
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T,(0) =

and using the integral representation of the Gauss hypergeo-
metric function [30],

VTR G R
F(a,b;c;7) = F(b)F(c—b)Jo &

—O (1 - &) g (c>b>0),
(29)

X(1

we have

0,v) (in days)

0.1

T(x=

0.01

FIG. 5. (Color online) Mean escape time 7T(x,v) given by Eq.
(27) at x=0 as a function of the starting volatility variable v. The
drawings illustrate that the MET saturates at a certain maximum
value when v=0. On the other hand, the straight line clearly shows
that the MET decays as 1/v with increasing volatility as we prove
in the main text. Parameters of the model are the same than those of
Fig. 4.

-1, m=0.093 day~"?, and the three different values of the parameter

A\ o g Oy, O &)
T,(0) = m( ) (0 Anl An_m' (30)

We therefore see that the mean escape time T(x,v) tends to a
finite quantity when v — 0.

Let us now turn to the case of increasing volatility. In this
situation it is convenient to perform the following change of
integration variable in Eq. (28):

__1-¢
Mt €
then [recall that w,u_=(8,/2L)?]

Vpy
2.
T,(v) =y, f g(z)e B2 v3gy,
0

where

g(Z) = (1 - M+Z)_l+”-6/An(1 + M_Z)—Hf)—ﬂ_amn'

As v— o the exponential term falls off quickly, and we
may safely change the upper integration limit 1/u, by ce.
Using then Watson’s lemma we write [31]

2L/B,)*

k+1

Yo E ©B(0)——— (31)

T,(v) ~

Up to the leading order (g(0)=1)

T,v) ~ v,2L/B,)*(1/v) + O(1/v?),

or [cf. Egs. (11) and (16)]

16a*L* (-1)"

i ane 1)3(1/1)) +0(1/v%).

T,(v) ~ (32)

Therefore,
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16al?
K

+0(11v?).

T(x,0) ~ —5(1/0) X = )1)3 cos[(2n + 1) mx/L]

n=0 (2

The series on the right can be summed with the result [32]

T(x,v) ~ /fz—‘z[(uz)2 -x*1+0(1/v?). (33)
This is a remarkable result since shows that for large vola-
tility the MET has the same form as that of the Wiener pro-
cess (see Sec. IV). Moreover, the two-dimensional MET de-
creases linearly as 1/v.

The behavior of T(x,v) with volatility is clearly seen from
the numerical evaluation of the exact MET given by Egs.
(27) and (28). Figure 5 shows, on a log-log scale, how the
MET saturates to a maximum when v tends to zero, while for
large volatility T(x,v) is well fitted with a power law with
exponent —1 which confirms the asymptotic expression (33).

IV. AVERAGING THE VOLATILITY

In real financial data the volatility is, in fact, a hidden
variable which has to be measured in an indirect way [33]. It
is therefore of great significance to know whether the price
of an asset remains inside a given interval, regardless of its
volatility. In physics the analog to this question would be
knowing the survival probability for the position of a Brown-
ian particle without worrying about its velocity [10]. Consid-
ering the entanglement between return and volatility (or po-
sition and velocity), this is certainly a difficult question and
one often has to rely on approximate answers. Fortunately,
the latter is not the case in the Heston model, as we shall see
next.

A. The survival probability of the return

In order to obtain the SP of the return, S(x, 7), regardless
the value of the volatility, we have to average the volatility
away from S(x,v, 7). We will do this by assuming that, at the
time we measure the return, the volatility process has
reached the stationary state [34]. We therefore define S(x, 7)
as the average:

S()C,T)=j S(x,v, Npy(v)dv, (34)
0

where p(v) is the stationary probability density of the vola-
tility. For the Heston model this density is the normalized
solution of the Fokker-Planck equation

d d
£<(v - 0)+ EU)Pst(v) =0,
which is given by the Gamma distribution:

1
pu(v) = I g)v""e“’. (35)

Note that 6 is the stationary variance of the volatility variable
v. Indeed, from Eq. (35) we see at once that 6:<v2)sl—<v>§t.
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Observe also the changing shape of the stationary distribu-
tion (specially as v—0) according to whether <1 or 6
>1; a fact that, as we shall see below, has consequences for
the behavior of the MET.

From Egs. (7) and (34) we get

o0

S(x,7) = >, S, (Pcos[(2n + 1)mx/L], (36)
n=0

where

S,(7) = f S, (v, py(v)dv,
0

which, after making use of Eqgs. (17) and (35), yields

e—A,,(T)

[1+B,]" G7)

Sil( T) = ’y}’l

We will write this Fourier coefficient in a more conve-
nient form. Let us first note that by applying Eq. (20), we can
write

A e H-T 0
e~An(m = (”—_AT> ) (38)
Myt pe
On the other hand, from Eq. (21) we see that

I’lT

(1 + p) + (l—p« )e~
P+ p_eT '
but 1+u_=p, and 1—u,=—pu_ [cf. Eq. (22)]. Hence,

1+B,=

2 -A T
e n
1+B,(7)= %. (39)
My + g™
Plugging Egs. (38) and (39) into Eq. (37), we have
A‘e— M_T 0
Su(1)= 7<—2_A) ; (40)
Wy — e
and therefore,
- Aje -7\
S(x,7) = E YV ﬁ cos[(2n + 1) mx/L],
0\ — pZetn
(41)

which constitutes the exact expression for the SP of the re-
turn (Fig. 6).

We will now show the asymptotic time behavior of
S(x,7). We easily see from Eq. (41) that for long times,
7> 1, the asymptotic form of the SP is

S, =, yn(—;) e -Tcos[(2n+ 1)mx/L] (7> 1),
n=0 Moy

(42)

while for short times 7<<1 and after taking into account [cf.
Eq. (22)]

M ,u,ze_A T=A,(1+ ,LL_T) + 0(72)

we get
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FIG. 6. (Color online) Survival probability of the return, S(x, 7),
given by Eq. (41) with L=0.01 as a function of the return x and
time 7=at. Parameters of the model: 0=1.25, «=0.045 day‘l, m
=0.093 day~"?, and k=0.0014 day~".

- —Ou_t
S, 1) =, yne— cos[(2n + 1)mx/L]
n=0

(14120 (=D

(43)

The approximate expressions for S(x,7) given in Egs.
(42) and (43) suggest an exponential decay (essentially gov-
erned by the normal level 6) for either short and long times.
This is confirmed by the numerical evaluation of the exact
SP, Eq. (41), which we present in Fig. 7. We clearly see there
two different exponential decays which match those shown
in Egs. (42) and (43). This exponential decay is also present
for the survival probability of the hitting time as shown in
Ref. [14].

B. The mean escape time of the return

In terms of the survival probability S(x,7), the mean es-
cape time is given by

0 T
10 8=0.25 ©
. 0=1.00 e
107 F ", 0=4.00
.....
102 ....‘o
& g,
(S ®e
= ’. .."o
¢ 10° F e **oes,
ka3 %o,
(] ®%0,
107 ¢ *%0ee
.....
-5 L ...'n
10 L3
10 | L=0.01
0.2 0.4 0.6 0.8 1 1.2

T

FIG. 7. (Color online) Survival probability S(x,7) given by Eq.
(41) with L=0.01 as a function of the time 7=ar and starting from
the return midpoint x=0. Parameters of the model are «
=0.045 day™! and m=0.093 day""2. Notice that since «
=0.045 day™! then 7=1 corresponds to an actual time of ¢
=22 days. The straight lines plotted on the lowest curve are the
asymptotic approximations given by Egs. (42) (7>1) and (43) (7
<1).
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T(x) = Jm S(x,r)dkt.
0

Combining this equation with Eq. (41), we see that T(x) is
written as a Fourier series of the form

T(x) = iE T, cos[(2n + 1)mx/L], (44)
n=0

with Fourier coefficients given by

T,= 'ynAng (%) 0d7'. (45)
0 \My—p_e "

The integral appearing in the right-hand side of this equation
is evaluated by performing the change of variables £=e¢ ™.
We have
vy
Th=""4
My

1
f EWOIN — () €],
0

and, taking into account the integral representation of the
Gauss hypergeometric function given in Eq. (29), we get

AN [ b ou 4
T,Eﬁ(—;) F(@,L;HL;’%).
01“'— My An An My

Finally, the MET is given by (see Fig. 8)

1 < AN [ e O u?
T(x)=— >, ﬁ(—;) F(G,i;l+i;ﬂ—;>
aen:O Mo\ ey AV! An Moy

Xcos[(2n + 1)mx/L]. (46)

From a practical point of view, an interesting property to
look at is the behavior of the MET as a function of the span
L specially for short and large values of L, the latter being
closely related to financial defaults or uprisings depending
on the sign of x. We will thus consider the two limiting cases
(a) L—0 and (b) L—co.

(a) In the case of small span the Taylor expansion as L
—0 of Eq. (46) leads to the following asymptotic expression
(see Appendix B for details):

L, <1,
T(x) ~{-L*InL, 6=1, (47)
L?, 6>1 (L—0).

We see that in this case the behavior of the MET is governed
by the (dimensionless) normal level 6 which coincides with
the stationary variance of the volatility variable v. Let us
recall that a similar situation arises for the stationary distri-
bution since, as seen in Eq. (35), py(v) behaves in a different
way according to whether the normal level is greater or
lower than 1. Note that [cf. Eq. (16)] #<1 implies m?>
<k*/ a, that is, volatility fluctuations—represented by the
vol of vol k—are wilder than the tendency toward the normal
level given by am?. On the other hand, when this tendency is
greater than the volatility fluctuations (i.e., #>1) the MET
grows quadratically with L independent of the normal level
m but with slope depending on the vol of vol through the
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FIG. 8. (Color online) Mean escape time 7T(x) based on the exact expression (46) as a function of the starting return x. The left figure
shows the case when L=0.1 while the right plot shows the case when L=0.01. In both cases, the larger the € the lower the MET. We also
draw the MET corresponding to the Wiener process (note that the latter is always shorter than Heston’s MET). Parameters of the model are

the same as those of Fig. 4.

combination k?/ & [cf. Egs. (B9) and (B10) of Appendix B].
All of this is exemplified in Figs. 9 and 10 where we plot,
based on the exact expression (46), the MET as a function of
the span L.

(b) Let us now look at the behavior of the MET with
increasing span. Unfortunately, this case is more difficult to
deal with since L appears in the Fourier series solution basi-
cally through the combination (2rn+1)/L and any effect due
to L— o is neutralized by increasing values of n which, in
turn, are needed to sum the Fourier series. The case (a) above
turns out to be workable because the limits L—0 and n
— 0 are compatible.

On the other hand, the numerical evaluation of the exact
MET (46) shown in Figs. 9 and 10 clearly indicate that the
MET grows quadratically with the span regardless of the
value of the normal level m:

FIG. 9. (Color online) Mean escape time T(x=0) given by Eq.
(46) as a function of the span L when #<1. The solid lines corre-
sponds to L?. Parameters of the model are the same as those of
Fig. 4.

T(x) ~L* (L— ). (48)
We recall that we have already encountered this behavior at
the end of Sec. IIl when analyzing the two-dimensional
MET, T(x,v), for large volatility [cf. Eq. (33)]. In Appendix
C we justify this quadratic growth by means of a heuristic
argument.

We also note that now, contrary to the case of small span,
the slope is independent of k*/ « and all the cases which have
the same m merge into a single curve (see Figs. 9 and 10).

C. The Wiener process

For many years the most ubiquitous market model has
been the geometric Brownian motion which was proposed by
Osborne [35]. In this model the price P(r) obeys the stochas-
tic differential equation

0=
106 0=
0=4.
Wi
10* |
n
>
3 .2
o 10° ¢
S
% 100 |
=
102+
e
o*)
10.4 qﬁ . , . . .
10 103 1072 107 10° 10'
L

FIG. 10. (Color online) Mean escape time T(x=0) given by Eq.
(46) as a function of the span L when 6= 1. Parameters of the
model are the same as those of Fig. 4.
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FIG. 11. (Color online) Return survival probability as a function
of the scaled starting return x/L when L=0.05. We represent the
S(x, 7/ a=35 days) of the Heston model given by Eq. (34) for several
values of 6. We also plot the SP corresponding to the Wiener pro-
cess, Sp(0,1=5 days), given in Eq. (49). Parameters of the Heston
model are a=0.045 day™' and m=0.093 day~"2. For the Wiener
case we suppose that volatility is equal to the normal level o=m.

dP(1)
P(1)

=vdt+odW(1),

where v is a constant drift, o is the volatility (a constant as
well), and W(r) is the Wiener process. In terms of the zero-
mean return X(7) defined in Eq. (1), the model reads

dX(t)=o dW(t).

In other words, X(¢) is the Wiener process with variance o?.

In view of the widespread use of this market model
among practitioners and even academicians [36], we find it
convenient to compare the findings for the escape problem of
the return discussed in this section with those of the Wiener
process. This, in turn, may provide a test for the appropriate-
ness of the assumption of stochastic volatility for real market
models.

Let us thus suppose that the zero-mean return is described
by the Wiener process and denote by Sy(x,?) its survival
probability inside the interval —L/2<X(¢r)<L/2. This func-
tion obeys the equation [26]

3y _1 S
a2
with initial and boundary conditions
So(x,0)=1, Sy(xL/2,t)=0.

Proceeding as we have done before, we look for a solution to
this problem in terms of a Fourier series. In this way, one
easily obtains
45 (-1
Solx,1) = -> D exp{— [wLo(2n + 1)T1/2}
T =0 2n+1

Xcos[(2n + 1)mx/L], (49)
and the MET is

PHYSICAL REVIEW E 78, 056104 (2008)
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FIG. 12. (Color online) Return survival probability as a function
of the scaled time 7. We represent the decay S(0, ar) with time for
the Heston model given in Eq. (34) when 6=1.25 in comparison
with the Wiener model SP, S,(0,7), provided by Eq. (49). In both
cases we assume that the starting return is the midpoint of the
interval L=0.01. The inset shows same curves but on a semiloga-
rithmic scale. Parameters of the model are the same than those of
Fig. 4.

o0 = S5[(L27 -] (50)

In Fig. 11 we plot the Sy(x,#) given by Eq. (49) in terms
of the return x and for a fixed time =5 days. In Fig. 12 we
do the same but as a function of time and for a fixed return
x=0. In both figures we also represent the Heston SP, S(x,?),
given in Eq. (41). We see that the survival probability is
always higher under stochastic volatility than when the vola-
tility is constant; although for a greater normal level 6, this
difference becomes smaller.

Thus, for instance (see Fig. 12) the survival probability of
the Wiener process in one day starting at x=0 with span L
=0.01 is just Sy(x=0,7=1 day)=0.026; for the Heston model
when 60=1.25 this probability is eight times higher:
S(0,1 day)=0.208. In two days the difference is even higher:
S0(0,2 days)=0.0005 versus S(0,2 days)=0.095.

This difference is also detected in the MET. Thus, in Fig.
8 we see that the Heston MET is invariably longer than that
of Wiener. In other words, the Wiener process has faster
escape than the Heston SV model.

Therefore, and contrary to intuition, the assumption of
stochastic  volatility, notwithstanding occasional bursts,
seems to stabilize prices after a certain number of time steps.

D. Empirical data

Before concluding, we will consider whether the model
provides realistic results in comparison with empirical data.
Without the aim of being exhaustive, we have taken the Dow
Jones Industrial Average (DJIA) daily index for the period
between 1900 and 2004 which corresponds to 28 545 trading
days. This is one of the largest daily data sets available, and
we will leave for future investigations a more thorough em-
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FIG. 13. (Color online) Mean escape time 7T(x=0) as a function
of the span L for the Dow-Jones Index, the Heston model (46), and
the Wiener (50). Parameters of the Heston model are m=5.8
%1073 day™'"2, @=0.004 day~!, #=1.1 (and k=5.1X107* day™).
The Wiener case takes 0=5.8 X 1073 day~!2,

pirical study on high-frequency data and other daily data
sets. The purpose of this section is simply to illustrate how
feasible it is to describe real data with the theoretical Heston
model.

We have first constructed the discrete version of the
(daily) zero-mean return,

X(r+ 1 day) — X(z) _ P(t+ 1 day) — P(z)
X(t) - P(1)

P(t+ 1 day) — P(1)
- P(1) ’

for later computation of the MET and the SP for X(¢) inside
the interval —L/2<X(¢t) <L/2 and with starting return X(0)
=0.

Figure 13 shows the MET of the DJIA index and two
possible fits. The first fit corresponds to the Wiener case, Eq.
(50), with =5.8X 1073 day~"2. This value is smaller than
the historical standard deviation of the DJIA daily return
which is equal to 7.1 X 1073 day~"2. The second fit corre-
sponds to the Heston model, Eq. (46), with parameters that
keep some consistency with those provided by Refs. [20,21]
for fitting the (barrier-free) probability density function of
the DJTA [37]. The empirical data becomes scarce when we
want to look at exit times from a span greater than 1 (which
corresponds to a 100% growth rate of the index). For very
small spans (corresponding to less than 1% growth rate) fi-
nite size effects emerge because of the lack of intraday data.
Broadening the span domain in these two directions would
require having higher-frequency data. We will leave this
study for future investigations.

A similar situation is observed in the survival probability
case. The Heston and Wiener SP’s shown in Fig. 14 need to
be renormalized at time r=1 day since empirical data are
unable to see exit times below a one day time horizon. After
this manipulation, we can observe that the Wiener SP, Eq.
(49), with o estimated from the MET plot, shows an ex-

x Wiener X

0.1

0.t)

\';/ 0.01
%)
0.001
0.0001 : : ‘ . :
10 20 30 40 50
t (in days)

FIG. 14. (Color online) Return survival probability as a function
of time for the Dow-Jones Index, the Heston model (41), and the
Wiener model (49) when L=0.012. Parameters of the Heston model
are m=5.8%1073 day™"?, @=0.02 day”!, 6=1.1 (and k=12
% 1073 day™'). The Wiener case takes 0=5.8 X 10~ day~""2.

tremely swift decay. On the other hand, the Heston model,
Eq. (41), greatly improves the description of empirical data
with the right exponential decay.

Finally, we mention that the results herein obtained are
also qualitatively consistent with a more exhaustive view on
financial data as presented in Refs. [14—17] where the hitting
time (i.e., single barrier) survival probability on 1071 stocks
traded at the New York Stock Exchange was studied, finding
an exponential decay for large enough times in both daily
[14-16] and intraday [17] data. Again, we will leave a more
exhaustive test on different sources of empirical data for fu-
ture research.

V. SUMMARY AND CONCLUSIONS

We have studied the escape problem of the return under
the assumption of stochastic volatility given by the Heston
model. The problem is fully characterized by knowing the
survival probability S(x,y,r) of the bidimensional process
(X(1),Y(r)) inside the strip

—L2<X®)<L2, 0<Y()<o,

where X(r) is the zero-mean return and Y(¢) is the volatility
variable which, for the Heston model, is related to the vola-
tility o by o()=\Y(r). The survival probability obeys the
backward Fokker-Planck equation (5) with initial and bound-
ary conditions given in Eq. (6). We have been able to exactly
solve the problem by means of the Fourier series expansion
given in Eq. (23).

Once we have the solution for S(x,y,7), another interest-
ing and most useful quantity to know is the mean escape
time. For the entire process given by the return and the vola-
tility, the MET T(x,y) is exactly given by a Fourier series as
well [see Egs. (27) and (28)]. We have shown that, as the
volatility decreases, T(x,y) tends toward a maximum, albeit
finite, value. Moreover, as the volatility increases the MET
decreases following the hyperbola 1/y which is quite re-
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markable because this is exactly the behavior of the MET
with the volatility had the return followed the Wiener process
(i.e., constant volatility) instead of the Heston model.

Real financial data consist of time series of prices and the
volatility is not directly recorded and only observed in an
indirect way. This hidden character makes it worth averaging
out volatility from the expressions of S(x,y,?) and T(x,y)
and thus solving the escape problem for the return alone. The
assumption to be made is that the volatility has reached the
stationary state; in the Heston model the latter is character-
ized by the Gamma distribution, Eq. (35).

Following this method, we have obtained exact expres-
sions of S(x,7), Eq. (41), and T(x), Eq. (46), both in terms of
Fourier series. The SP has two different exponential decays:
one for long times and another, which is faster, for short
times. We have been able to get analytical expressions for
both decays.

We next analyzed the behavior of T(x) as a function of the
span L, especially for short and large values of L. The latter
case is particularly significant because large values of L are
associated with financial uprisings or defaults. We have
shown that the behavior of the MET as L — 0 depends on the
normal level € and it is given in Eq. (47). On the other hand,
when L—  the MET grows as L? independently of the nor-
mal level.

Therefore, when 0<<1 (i.e., if volatility fluctuations are
greater than the tendency toward the normal level), we have
a “crossover” in the MET, from L— 0 to L— o0, of the form

T(x) ~L*' - T(x) ~L* (6<1).

On the other hand, for #>1 (the tendency to relax toward
the normal level is now stronger than the fluctuations of the
volatility) there is no such crossover, since T(x) ~ L? for both
small and large values of the span. Again, this quadratic de-
pendence is the same as if the return had been described by
the ordinary Wiener process.

We have finally compared the return SP and MET to those
provided by the assumption of constant volatility. In other
words, we have confronted the escape problem of the Heston
model with that of the Wiener process. Our main finding is
that Heston’s SP is bigger and Heston’s MET is longer than
those corresponding to the Wiener process. This, at first
sight, is contrary to intuition because a random volatility,
despite occasional bursts, would seem to stabilize prices to a
greater extent than a constant volatility. However, let us re-
call that in S(x,7) and T(x) the volatility has been averaged
around its mean value, which is precisely the normal level 6,
and, if € is not very large, this fact may be responsible for the
stabilization of the return.

A final remark. The Heston model is one among several
possible candidates aimed at describing a realistic price dy-
namics. The question of which SV model is more appropriate
as a market model is still an open question [38]. We have
chosen the Heston model to carry out the present develop-
ment because, as we have seen, it allows for an exact treat-
ment. In forthcoming works we will present an approxima-
tion scheme in order to study the escape problem for a wider
class of models and perform a more complete empirical
analysis to better answer this question.

PHYSICAL REVIEW E 78, 056104 (2008)

ACKNOWLEDGMENTS

Partial financial support from Direccién General de Inves-
tigacion under Contract No. FIS2006-05204 is acknowl-
edged.

APPENDIX A: FUNCTIONS A, (7) and B, (7)

To obtain the functions A,(7) and B,(7) we must solve the
Riccati equation
Bn=_Bn_B;21+(ﬂn/2L)25 (Al)

with initial condition B,(0)=0. To this end we define a new
function Z(7), related to B,(7) by

z
B,(7) = 7
Then Z(7) obeys the linear equation
Z+7Z-(B,/2L)*Z=0,
whose solution reads
Z(7) = Cie""+ Cre™™7,
where C; and C, are arbitrary constants and
ue=(A,x1)2, A,= V’m~
The expression for B,(7) is thus given by

pet"=(Cy/C)p ™7
e+ (Cz/Cl)e_“+T

B,(7)=

and the initial condition B,(0)=0 yields

Cz/C] = M_/,Uq_.
Hence,
1- e—AnT
B(T)=p- " a; (A2)
L+ (pdpy)e™

which is Eq. (21).
Plugging Eq. (A2) into Eq. (18) and setting £é=¢™* as a
new integration variable, we get

TS R T S
A"(T)_ An AT §[1+(ﬂ—//‘l’+)§]d§’
but
Lo ming— (14 pponl] + (€]
_— =1In - n .
g1+ (uipu,)é A o

Hence (recall that u,+u_=A,),

=-A,T
A7) = 0|:,LL_T+ ln(M)}, (A3)

A
which is Eq. (20).
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APPENDIX B: BEHAVIOR OF THE MET FOR SMALL
SPANS

Let us suppose L— 0. From Eq. (22) we see that
A, =(B/L1+(LIB,)%12+ O(LY)]

and
pe = (B,20)[1 = (L/B,) + O(L?)].
Hence,
2
B o 1-@wg,) +owd, (B1)
§:=u-«uag+oaﬂyz (B2)
and

6
L(A—i;) =2203(1/B,) " [1 + (1 =26)(L/B,) + O(L?)].

+

(B3)
(i) Suppose that #<1. Using Eq. (B1) we write

O Ou MZ) <0M_ m )
—: 1+ — —:1 —1 L
(aAn o, ) TRy oD,
but [30]
T (c—a—-b
Flabie:)=Oe=a=bl o). B4)

Yc—a)l(c-b)

Note that the condition c—b—a>0 implies §<<1. We thus
find [see Egs. (B1) and (B2)]

0 0
(eﬁl On M)
A A, g

_T(+62r(1-o
T T(-62)

n

[1+0(L)] (6<1). (B5)

Plugging Egs. (B3)-(B5) into Eq. (46) and taking into ac-
count Egs. (11) and (16), we finally get

T(x) = L"“nEO (2 1)“’+2 cos[(2n + 1) mx/L]
X[1+0(L)] (o<1), (B6)
where
2045 o\ ! _
e T E R
For x=0 we have
7(0)=K,L*'[1+0(L)] (6<1), (B8)

where
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o

K, =N, (- 1)"/(2n+1)%?,
n=0

and for small values of the span L the MET grows as a power
law with exponent related to the normal level of the volatility
0<1.

(ii) Suppose now that #>1. We employ the following
property of the hypergeometric function [30]:

F(a,bic;z) = (1 -2) " PF(c —a,c - b;c;z),
and write

Ou.  Ou
<9L1 O 2)
A, A,

_<1 é)“ﬁF(l b %1%#_3)
(1o _
My An An My

which, after use of Eq. (B1), reads

AN On HL) ]
_</3n) [F<1—0+ An,l,An,l +O(L) |.

Note that we can apply Eq. (B4) since the condition c—a
—b>0 now implies 6> 1. Hence [see Eq. (B2)],

Ou. . O u
<9L1 O )

A, A, Tl
4L 1
<ﬂn) (EF(I + 0/2)+0(L)>.

Substituting this into Eq. (46) and taking into account Eq.
(B3), we obtain

o

T(x) = NZLZE ( b e cos[(2n + 1)mx/L]
X[1+0(L)] (6>1), (B9)
where
7 2
N2=(2_)(2_a) w (BIO)
Tal) \ Tk 1-6

For x=0 we have

T0) =KL [1+0(L)] (8>1), (B11)

where

o

K,=N,>, (- 1)"/(2n+1)>.
n=0

Therefore, in this case the average escape time grows qua-
dratically with the span—as if the zero-mean return had fol-
lowed the simple Brownian motion—independently of the
value of the normal level of volatility 6> 1.

(iii) When 6=1, we utilize the following series expansion
of the hypergeometric function [30]:
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o0

I'(a+0) D (@),(b),
F(a)r(b) n=0 n')2
— (b +n)—In|1 —z|](1-2)",
which, when z— 1, yields the approximation

~ I'(a+b)
I'(a)T(b)

F(a,b;a+b;z) = [2n+1) = ila+n)

F(a,bsa+b;z)= In|1 -z +O(1).
Hence, as L—0,

2
F(l,&q + &‘&) =~ (1/2)In(4L/B,) + O(L In L),

A Ak
whence,
41)% <
T(x) = QE 1’;[— In(4L/B,) + O(L In L)]
a =0 Py

Xcos[(2n+ 1)mx/L] (6=1), (B12)

and there is a logarithmic growth with the span when 6=1.
The results above [see Egs. (B6), (B9), and (B12)] are
summarized in Eq. (47).

APPENDIX C: BEHAVIOR OF THE MET FOR LARGE
SPANS

Let T(x,y) be the MET of the joint process (X(z), Y(¢)) out
of the strip —L/2<X(t)<L/2, 0<Y(r)<oe. In terms of the
SP S(x,y,r) the MET is given by

PHYSICAL REVIEW E 78, 056104 (2008)

T(x,y) = Jm S(x,y,r)dt.
0

From Egs. (5) and (6) we easily see that T(x,y) is the solu-
tion to the boundary-value problem

1., &#T ar 1 &#T
Sy —aly-m)—+>y—5=-1,  (CD)
2 T oy dy 27 ox

T(+L/2,y,1) =0. (C2)

Now our heuristic argument: large values of the span L are
equivalent to small values of x, but in this situation (as long
as y is not too small) &#T/dx* is the dominant term in the
left-hand side of Eq. (C1). This allows us to approximate the
MET T(x,y)~Ty(x,y), where the “outer” approximation
[39] Ty(x,y) is the solution to

1 o1y _ 1 T(xL2,y,0)=0
27 o =

That is,

1
To(x,y) = ~[(L12)* = 27],
y
and the MET grows as

T(x,y) ~L* (L— ). (C3)
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